An End in Sight For “Forever Chemicals”
MnDRIVE-sponsored research by Mikael Elias and Lawrence Wackett
Caroline Frischmon (writer)

MnDRIVE researchers Mikael Elias and Lawrence Wackett are studying Acidimicrobium in hopes of harnessing the bacteria’s PFAS-degrading power
Waterproof, nonstick and flame retardant. Products like raincoats, frying pans and firefighting foam keep us safe, clean and comfortable. Their durability stems from the presence of carbon-fluorine bonds, which are some of the strongest in organic chemistry. Unexpectedly, these great modern conveniences have also created a widespread environmental problem. Compounds with multiple carbon-fluorine bonds, called PFAS (perfluoroalkyl substances), have accumulated for decades in the environment with no effective way to break down these “forever chemicals.”
Exposure to PFAS through drinking water is associated with higher cholesterol, certain cancers and suppressed immune responses. Scientists and regulators have tried to address the PFAS contamination through filtering, coagulating, burning and more, but most cost-effective solutions simply concentrate the chemicals and move them away from wells, aquifers and other points of human contact. Now, there’s hope that a bacteria called Acidimicrobium sp. might hold the key to a more permanent solution. Through a MnDRIVE Environment Seed Grant, researchers Mikael Elias and Lawrence Wackett, both University of Minnesota professors in the Department of Biochemistry, Molecular Biology, and Biophysics, will study the bacteria’s promising ability to digest PFAS. Read more.